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Linear-scaling semiempirical quantum calculations for macromolecules
Tai-Sung Lee, Darrin M. York, and Weitao Yang
Department of Chemistry, Duke University, Durham, North Carolina 27708
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A linear-scaling method to carry out semiempirical quantum mechanical calculations for large
systems has been developed based on the density matrix version of the divide-and-conquer
approach. The method has been tested and demonstrated to be accurate and efficient. With this
implementation, semiempirical quantum mechanical calculations are made possible for large
molecules over 9000 atoms on a typical workstation. For biological macromolecules, solvent effects
are included with a dielectric continuum model. ©1996 American Institute of Physics.
@S0021-9606~96!01231-7#

INTRODUCTION

A quantum mechanical description of the electronic
structure is important for many aspects of molecular model-
ing, including bond formation and cleavage in chemical re-
actions, polarization, and chemical bonding of metal ions. In
these cases, it is difficult, if not impossible, to use the con-
ventional molecular mechanical force fields. Quantum calcu-
lations are, however, expensive. The numerical effort of con-
ventional electronic structure methods scales asN3 or higher,
whereN is the number of electrons. This cubic or higher
order scaling is the ultimate bottleneck for the applications of
quantum calculations to large molecules. Currently, only
molecules with few hundred atoms can be treated inab initio
calculations,1,2 while conventional semiempirical methods
can handle about 1000 atoms with supercomputers.3

Much effort has been made in the development of linear
scaling quantum calculations, i.e., methods that require com-
putational effort proportional to the size of the system. Yang
first proposed the divide-and-conquer approach and demon-
strated that it is possible to attain a solution of linear scaling
by localizing the electronic degrees of freedom.4,5 Galli and
Parrinello suggested a linear scaling algorithm and applied to
tight-binding Hamiltonians.6 Li, Nunes, and Vanderbilt intro-
duced a variational method for obtaining the density matrix
with cutoff in real space and showed linear scaling in com-
putational effort.7 Mauri, Galli, and Car,8 and Ordejo´n
et al.,9 used unconstrained minimization methods combined
with a local orbital formulation and were able to achieve
linear scaling. Stechel, Williams, and Feibelman also pro-
posed a block diagonalization process in subspace.10

Goedecker and Colombo developed another linear scaling
algorithm to replace the diagonalization process in the tight-
binding calculations.11 These linear-scaling methods elimi-
nate the cubic-scaling step associated with the determination
of the occupied electronic eigenstates in the quantum calcu-
lations. Nonetheless, application of these methods to macro-
molecule systems has not yet been demonstrated at theab
initio level. The main reason, in the case of linear combina-
tion of atomic orbitals, is that the matrix element evaluation
is still the bottleneck, even though it has a computational
scaling of only formallyO(N2). Recent efforts have been
directed to develop linear-scaling algorithms for the evalua-

tion of the matrix elements and the long-range Coulomb
interaction.12–16 It is hopeful that work along this line will
soon make first-principle calculations of the matrix elements
efficient enough that the linear-scaling quantum mechanical
algorithms can be effective.

The situation in semiempirical quantum mechanical
methods is quite different.17,18 The Hamiltonian matrix is
constructed very efficiently from semiempirical approxima-
tions and hence the computational effort is in practice limited
by the cubic-scaling diagonalization processes. This is just
what the linear-scaling algorithms are designed to overcome.
Stewart has proposed a local molecular orbital method for
semiempirical calculations.19 Yang and Lee20 extended the
divide-and-conquer approach4 to accommodate density ma-
trix description so that it can be applied to Hartree–Fock and
semiempirical methods. Thus applying semiempirical quan-
tum calculations to large systems becomes possible with this
density-matrix version of the divide-and-conquer approach.

In this paper, we describe the implementation of the den-
sity matrix divide-and-conquer approach into the semiempir-
ical MOPAC program.21,22 The method is demonstrated to be
accurate and efficient. Semiempirical quantum mechanical
calculations are made possible for large molecules over 9000
atoms on a typical workstation. For description of biological
macromolecules, solvent effects are included with a dielec-
tric continuum model.

THEORY

We briefly summarize the density-matrix divide-and-
conquer approach below.20 The one-electron density matrix
can be used as the basic variable in various quantum me-
chanical calculations. Its matrix elements are given by

r i j5(
m

nmCimCjm , ~1!

where nm is the occupation number of themth molecular
orbital and$Cim% are the expansion coefficients of the mo-
lecular orbital over atomic basis functions.$Cim% are deter-
mined by the algebraic eigenvalue equation

HCm5SCmem , ~2!
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whereH is the molecular one-electron Hamiltonian matrix,S
is the overlap matrix, andem is the eigenvalue corresponding
to the eigenvectorCm .

In the density matrix formalism of the divide-and-
conquer approach, the density matrix is divided into sub-
system contributions by the use of the symmetric weight
matricesPa

r i j5(
a

Pi j
a r i j[(

a
r i j

a , ~3!

(
a

Pi j
a 51, ; i , j51•••M , ~4!

wherea is index of subsystems andM is the size of the basis
sets. Currently, the Mulliken-type weight matrix is used23

Pi j
a 51
51/2
50

if iPa and jPa
if iPa and j¹a
if i¹a and j¹a

. ~5!

Because of the local nature of the density matrix in real
space, the density matrix projected into each subsystem can
be approximated by solving the expansion coefficients lo-
cally; namely,

r i j
a >Pi j

a(
m

nm
aCim

a Cjm
a , ~6!

wherenm
a andCim

a are the occupation number and the eigen-
vector of themth molecular orbital in theath subsystem,
respectively. The local eigenvectors for theath subsystem
are determined by the subsystem eigenvalue equation

HaCm
a 5SaCm

a em
a , ~7!

whereHa is the molecular one-electron Hamiltonian matrix,
Sa is the overlap matrix, and$em

a % are the eigenvalues for the
ath subsystem.

The occupation numbernm
a is approximated by the

Fermi function f b(m2em
a ), with f b(x)5@11exp~2bx!#21,

whereb is the inverse temperature,m is the chemical poten-
tial, m is chosen so that normalization of the density is main-
tained

N5(
a

(
i j

r i j
aSi j

a , ~8!

r i j
a 5Pi j

a(
m

nm
aCim

a Cjm
a >2Pi j

a(
m

f b~m2em
a !Cim

a Cjm
a , ~9!

whereN is the total number of electrons and the factor 2
accounts for the spin degrees of freedom. The foregoing de-
scription of the density-matrix divide-and-conquer approach
applies to general electronic structure calculations. The con-
struction of density matrix from fragment contributions in
the manner of Eqs.~3!–~5! based on the Mulliken population
analysis has also been employed by Walker and Mezey,24

and Massa, Huang and Karle.25

In semiempirical calculations, the electronic energy is
expressed by

E5 1
2(
i j

r i j ~Hi j
core1Fi j !, ~10!

whereHcore is the one-electron core Hamiltonian matrix and
F is the Fock matrix. It can be easily expressed in the divide-
and-conquer approach

E5 1
2(

a
(
i j

r i j
a~Hi j

core1Fi j !. ~11!

The energy gradient expressions for the divide-and-
conquer approach have been derived and shown to be
accurate.20,26 In theMOPAC package, the energy gradients are
calculated with the frozen density approximation.21With this
approximation, the divide-and-conquer energy gradient with
respect to theath nucleus positionRa is expressed by

“Ra
E5 1

2(
a

(
i j

r i j
a
“Ra

~Hi j
core1Fi j !. ~12!

The gradients can be calculated by analytical methods27

or by the finite difference method.21 Except that the total
density matrix is approximated by the divide-and-conquer
approach, other procedures to calculate gradients are the
same as inMOPAC. The BFGS optimization procedure is
used in the original MOPAC package for geometry
optimization.28 This procedure requires constructing the Hes-
sian matrix which has anO(N2) scaling requirement of
memory usage; it cannot be used for large molecules. In-
stead, we chose the commonly used conjugate gradient
method for geometry optimization.29

For solution phase calculations, the COSMO model was
used.21,30–33This model treats the solvent as a conductorlike
dielectric continuum. The solute charge distribution is repre-
sented by a set of atomic charges, dipole moments, and
quadrupole moments, that induces a reaction field charge
density on the solvent accessible surface of the solute. The
solvation energy can be written as the reaction energy be-
tween those charges

Esol5qTBQ1 1
2q

TAq, ~13!

where$Qi% are the atomic multipoles of solute and$qj% are
the induced charges on the solvent accessible surface. The
atomic multipoles of theath atom of solute molecule,Qa

i ,
can be expressed in terms of the density matrixr and the
core chargeQa

core, which is the sum of the nuclear charge
and the core electron charge, by the following:

Qa
SS5Qa

core2ra
SS; ~14!

Qa
SM52ra

SM ; ~15!

Qa
MN52ra

MN , ~MN5X,Y,Z!, ~16!

wherera
SS, andra

SM, andra
MN are the matrix elements corre-

sponding to theS–S orbital pair, theS–PM orbital pair, and
the PM–PN orbital pair of theath atom, respectively. For
hydrogen atom, onlyra

SS is needed.A andB are the matrices
of interaction between those charges. IfRa is the position of
theath atom andr i and r j are the position of the chargeqi
andqj , then the matrix elements can be written as
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Ai j5ur i2r j u21, Aii53.8uSi u1/2, ~17!

Bi ,~a,MN!5
1

ur iau
for MN5SS,

5
1

ur iau
2

Ta

ur iau3
1
3~r ia!K

2Ta

ur iau5

for MN5KK,K5~X,Y,Z!

5
6~r ia!K~r ia!K8Ta

ur iau5

for MN5KK8,K,K85~X,Y,Z!,KÞK8

5
~r ia!Kda

ur iau3
for MN5SK,K5~X,Y,Z!, ~18!

whereSj is the surface area associated to the chargeqj ~in
unit of e.s.u.!, r ia5r i2Ra , (r ia)K is theK-direction com-
ponent ofr ia , andda andTa are parameters of theath atom.

Normally, $qj% are obtained by minimizing Eq.~13! and
than scaled appropriately to finite dielectric.34 In MOPAC, the
minimization process is done through inversion of theA ma-
trix. This method is fast for small systems because only one
matrix inversion operation is needed for the whole SCF pro-
cedure. However, it cannot be applied to large systems be-
cause of theO(N3) computational effort for matrix inversion
and theO(N2) requirement of the computer memory to store
A or A21.

In our implementation, a preconditioned conjugate gra-
dient method was used to minimizeEsol in Eq. ~13! to obtain
the charge set$qj%.

33 This method needs iterative operations
in the conjugate gradient minimization and leads to an addi-
tional iterative procedure within a single SCF cycle. It re-
quires only moderate overhead relative to gas phase calcula-
tions for large molecules because it does not need the CPU
intensive matrix inversion procedure.

The COSMO gradient term is given by

“Ra
Esol52qT~“Ra

B!Q1 1
2q

T~“Ra
A!q. ~19!

Because only the Coulomb type interactions are involved,
the gradients of matricesA and B with respect to theath
nucleus positionRa can be easily calculated.

IMPLEMENTATION

In the divide-and-conquer approach, each subsystem is
described by a set of local basis functions, instead of the
entire set of atomic orbitals. The accuracy of the description
is enhanced by the use of basis functions of neighboring
atoms. These neighboring atoms are called the buffer atoms.5

We here select buffer atoms by a distance criterion,Rb : If an
atom is within a distanceRb of a subsystem, this atom will
be included as a buffer atom for that subsystem. The diago-
nalization for a subsystem is performed with atomic basis
functions on the subsystem atoms and buffer atoms, and the
computational effort scales asNa

3 whereNa is the number of
basis functions in theath subsystem and its buffer region.
Previous studies using density functional theory have shown

the buffer region size needed for a given accuracy is inde-
pendent of the size of the whole molecule.5,20Hence, one can
chooseNa to become roughly a constant; for example, each
subsystem consists of a single amino acid and its buffer re-
gion includes all nearby atoms within a 6.0 Å cutoff~Rb56.0
Å!. Thus overall linear scaling can be reached with roughly
fixed-size buffer region for each subsystem.

While the divide-and-conquer method overcomes the
O(N3) scaling problem in the diagonalization process, the
O(N2) or higher order scaling of the computer memory
needs to be addressed. Since most of matrix elements in
quantum calculations are negligibly small for large mol-
ecules, sparse matrix storage methods can be employed. For
density matrix, because of its locality in real space, we can
truncate the matrix elements using a distance criterion,Rh .
Only the matrix elements corresponding to atom pairs with
interatomic distance less thanRh are evaluated and stored.
This cutoff makes the memory storage of the density matrix
proportional to the size of the molecules and also signifi-
cantly reduces the CPU time used for matrix element evalu-
ation. The one-electron core Hamiltonian and Fock matrices
are treated similarly.

In the original MOPAC program, the two-electron inte-
grals are calculated once and stored. While this is faster, the
memory needed for the two-electron integrals is roughly
400N2 bytes where N is the total number of heavy atoms. It
becomes impossible to store these integrals when the mol-
ecule is very large. Therefore, in our implementation they are
calculated on the fly when needed. No significant slowdown
was observed by doing this.

To further save memory, the eigenvectors obtained in
solving local diagonalization problem are not entirely stored.
Instead, based on the step-function-like character of Fermi
function, only those eigenvectors affecting the determination
of the chemical potential are stored. For other eigenvectors,
the contributions to the density matrix are calculated before
they are discarded.

All results were performed on an IBM RS/6000 work-
station with a 67 MHz POWER2 CPU, 256 MB memory,
and 512 MB swapping disk space. The PM3 Hamiltonian
was used for all calculations.35,36All the divide-and-conquer
calculations have the same parameter setting~i.e., the same
KEYWORD! asMOPAC default values. The program has the
ability to divide any molecule into roughly equal size sub-
systems. However, currently a subsystem is defined as one
amino acid residue for protein molecules, and one nucleotide
unit for DNA molecules.

RESULTS

Accuracy

We chose a small protein, RP71955, which consists of
280 atoms, to test the accuracy of our implementation. The
structure of this molecule is an NMR structure proposed by
Fréchetet al.37

Gradients can be calculated analytically or by the finite
difference method in semiempirical calculations. Because the
formulas to calculate matrix elements are much simpler than
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those to calculate derivatives of matrix elements, the finite
difference method is faster than the analytical method. Table
I shows the root-mean-square~rms! values of Cartesian gra-
dient calculations by different methods for the RP71955
molecule. The finite difference method gives very close re-
sults compared to the analytic method, thus we chose the
finite difference method to calculate gradients, as is used in
MOPAC package.21

Table II shows the accuracy for different matrix cutoff
distance,Rh , and different buffer size,Rb . We define an
accuracy criterion as 531023 kcal/mol per atom in energy
calculations and 0.1 kcal/mol/Angstrom in gradient calcula-
tions. We found buffer size should be no less than 6.0 Å to
meet this accuracy criterion. This agrees with previous

density-functional divide-and-conquer studies.20,26 For the
cutoff distance in density and Hamiltonian matrices, a value
of 7.0 Å is appropriate to save the memory usage and CPU
time without sacrificing accuracy. HenceRb is set to be 6.0
Å andRh to be 7.0 Å, for subsequent calculations.

The inverse temperatureb used in Eq.~9! has been
tested with the values of 20, 40, 100, and 1000 eV21. The
maximum difference between values of SCF heat of forma-
tion is less than 0.02 kcal/mol. Subsequently, we chose
b539.3 eV21, which corresponds to 298 K.

Geometry optimization

We tested the geometry optimization in solution for the
RP71955 molecule~with which the originalMOPAC program
failed to finish the optimization process!. The optimization
process stops when the following criterion is met: The maxi-
mum Cartesian gradient is less than 1.0 kcal/mol/Å. This is
comparable to the default value set in theMOPAC package,
which is 1.0 kcal/mol/Å for the rms value of gradients.

Figure 1 shows the decreasing of the maximum Carte-
sian gradient, the rms value of the Cartesian gradients, and
the SCF heat of formation versus the number of iterations in
the geometry optimization. That the total energy~heat of
formation! decreases exponentially with the number of itera-
tion shows the conjugate gradient method performs well in
searching the energy minimum. At the final iteration, which
is at the 144th geometry optimization iteration and the 324th
SCF calculation, the maximum gradient and the rms value of
the gradients are 0.87 and 0.19 kcal/mol/Å, respectively.

TABLE I. The rms values of differences in Cartesian gradients by different
methods in gas phase and solution phase~numbers in parentheses! calcula-
tions for the RP 71955 molecule. ‘‘MOPAC’’ means originalMOPAC calcu-
lation, ‘‘DC’’ means the divide-and-conquer calculation, ‘‘A’’ is analytic
gradient calculation, and ‘‘F’’ is the finite difference method. All entries are
in unit of kcal/mol/Å.

MOPAC,A MOPAC,F DC,A DC,F

MOPAC,A 0 2.92E-2 8.97E-2 9.46E-2
~0! ~2.89E-2! ~4.50E-2! ~5.23E-2!

MOPAC,F 0 9.40E-2 9.07E-2
~0! ~5.46E-2! ~4.25E-2!

DC,A 0 2.89E-2
~0! ~2.89E-2!

DC,F 0
~0!

TABLE II. The self-consistent calculation results of divide-and-conquer method for the RP71955 molecule in gas phase and solution phase~numbers in
parentheses!. E~dc! is the heat of formation of divide-and-conquer calculation.E~mopac!, the heat of formation of the originalMOPAC calculation, has value
of 2743.136 04 kcal/mol for gas phase and2972.662 54 kcal/mol for solution phase.N is the total number of atoms.G~dc! andG~mopac! are the Cartesian
gradients from finite difference in the divide-and-conquer calculation and the originalMOPAC calculation, respectively.Rh is the distance used to cutoff the
matrices andRb is the distance used to define the buffer atoms. All energies in kcal/mol, gradients are in kcal/mol/Å, andR’s are in Å.

~E~dc!-E~mopac!!/N
Rb

Rh

6.0 7.0 8.0 9.0 10.0

4.0 7.33E-03 21.75E-01 23.87E-01 27.43E-01 28.18E-01
~2.24E-02! ~22.70E-01! ~27.67E-01! ~21.51E100! ~21.84E100!

5.0 1.38E-02 22.10E-02 24.28E-02 24.62E-02 28.76E-02
~1.62E-02! ~1.54E-02! ~1.22E-02! ~21.23E-01! ~24.01E-01!

6.0 4.23E-03 3.20E-03 3.11E-03 3.10E-03 3.09E-03
~5.41E-03! ~4.47E-03! ~4.40E-03! ~4.40E-03! ~4.40E-03!

7.0 2.01E-03 7.69E-04 6.39E-04 6.23E-04 6.22E-04
~2.14E-03! ~9.44E-04! ~8.20E-04! ~8.07E-04! ~8.06E-04!

8.0 1.78E-03 5.02E-04 3.56E-04 3.37E-04 3.31E-04
~1.86E-03! ~6.13E-04! ~4.77E-04! ~4.61E-04! ~4.60E-04!

rms~G~dc!-G~mopac!!
4.0 8.80E-01 2.14E100 2.12E100 2.11E100 2.10E100

~8.79E-01! ~7.03E-01! ~7.39E-01! ~7.68E-01! ~8.05E-01!
5.0 2.34E-01 2.40E-01 2.06E-01 3.04E-01 3.09E-01

~2.13E-01! ~1.44E-01! ~1.44E-01! ~1.44E-01! ~1.80E-01!
6.0 8.95E-02 9.07E-02 9.08E-02 9.08E-02 9.08E-02

~4.15E-02! ~4.25E-02! ~4.13E-02! ~4.14E-02! ~4.15E-02!
7.0 1.76E-02 1.30E-02 1.29E-02 1.29E-02 1.29E-02

~1.67E-02! ~2.09E-02! ~1.68E-02! ~1.67E-02! ~1.67E-02!
8.0 1.38E-02 6.97E-03 6.77E-03 6.77E-03 6.74E-03

~1.63E-02! ~2.04E-02! ~1.65E-02! ~1.63E-02! ~1.63E-02!
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The total CPU time for the whole optimization is 118 251.64
s which is about 33 h. The average number of iterations used
to get a converged result in each SCF calculation is 6.8. The
optimized geometry has been taken as the input geometry for
original MOPAC to calculate the gradients and gives values of
0.74 and 0.20 for the maximum gradient and the rms of
gradients, respectively; those values already meet the default
geometry optimization criterion in theMOPAC package. This
confirms that the divide-and-conquer energy minimum is
also a converged minimum in the originalMOPAC program.

In Table III, the geometry obtained is compared with the
input geometry which is an experimental NMR minimized
average structure. The rms values show the bond lengths and
bond angles from our calculation are very close to the ex-

perimental data, while the dihedral angles have a somewhat
larger deviation. The rms positional deviation is 0.35 Å, in-
dicating only a small deviation from the NMR structure.

CPU time and memory usage

First, the scaling behavior of CPU times for both the
original MOPAC and our implementation were compared by
testing a series of alanine polypeptides which were con-
structed by SYBYL in linear alpha helix form and have size
of 13 atoms to 403 atoms. Figure 2 shows the average CPU
time used in a 20-iteration energy calculation test in both gas
and solution phase calculations. The cubic scaling behavior
of original MOPAC method is clearly shown. It also demon-
strates the limitation of the maximum size treatable in
MOPAC on a typical workstation. In this test, the divide-and-
conquer method is faster than originalMOPAC when the size
of molecule is greater than 263 atoms in gas phase calcula-
tion, and when the size of molecule is greater than 123 atoms
in solution phase calculation. For space-packed 3-D mol-
ecules, we find it is already faster when calculating RP71955
molecule of 280 atom; the average CPU time for one itera-
tion in a SCF calculation is 39.93 s using the originalMOPAC

and is 29.72 s using the divide-and-conquer method in gas
phase calculations. In solution phase calculations, the values
become 296.89 s for originalMOPAC and 44.74 s for the
divide-and-conquer method. The main reason for this signifi-
cant speed-up in solution calculations is that theO(N3) ma-
trix inversion process is replaced by a faster conjugate gra-
dient method.33

Several molecules with size of 256 atoms to 9378 atoms
~Table IV! were chosen to test the CPU time needed in the
divide-and-conquer method. For each molecule, one iteration
of energy calculation was performed, followed by the gradi-
ent calculation. Figure 3 shows the CPU time used for the
energy calculations for those molecules in gas phase and
solution phase; Fig. 4 is the CPU time for the gradient cal-
culations. A nearly linear-scaling behavior in the energy cal-
culations is demonstrated. The HIV protease tetramer and
hexamer molecules need significantly smaller CPU time than

FIG. 1. The change of SCF energy~heat of formation! and gradients in the
geometry optimization process. The upper is SCF energy in kcal/mol while
the lower is the maximum Cartesian gradient~solid line! and the rms gra-
dient ~dash line! in kcal/mol/Å.

TABLE III. The rms values of the differences of geometry parameters ob-
tained from the divide-and-conquer calculation and originalMOPAC calcula-
tion for the RP71955 protein molecule.

rms value

Bond length~Å! 0.026
Bond angle~degree! 2.83
Dihedral angle~degree! 14.65
rms positional deviation~Å! 0.35
rms positional deviation without H atoms~Å! 0.32

FIG. 2. The CPU time comparison between the divide-and-conquer imple-
mentation and the originalMOPAC in gas phase~solid diamond!, the original
MOPAC in solution phase~unfilled diamond!, the divide-and-conquer gas
phase calculation~solid square!, and the divide-and-conquer solution phase
calculation~unfilled square!.
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other molecules with similar size because they are relatively
less space packed, which means that less atoms are included
as buffer atoms and the CPU time is reduced as a result.
However, in solution phase calculations, these two molecules
have more solvent accessible surface area and need more
CPU time. The gradient calculations give anO(N2) curve,
which we will discuss in the next section.

To compare the memory usage in our implementation
with original MOPAC, we calculated memory usage of the
density matrix~The one-electron core Hamiltonian matrix
and the Fock matrix have the same size as the density ma-
trix.! The results are listed in Table IV. The total memory
needed in the divide-and-conquer implementation is roughly
eight times the size of the density matrix, whileMOPACneeds
more than twenty times.

DISCUSSIONS AND CONCLUSIONS

We would like to address several points associated with
the linear-scaling curve obtained in one-iteration energy cal-
culations. First, the total CPU time needed to get a con-
verged SCF energy may not necessarily beO(N), because
the number of iterations to get converged results for large
molecules may vary. We currently use a simple mixing
scheme to ensure and speed up the convergence, and find
that the numbers of iterations needed to get converged ener-
gies for different molecules are almost unpredictable. For
molecules we tested, they fell into a range of 20 to 90, and
are independent to the size of molecules. Thus a detailed
study of convergence is needed.

Second, because there is no diagonalization process in
the gradient calculations, the divide-and-conquer method
cannot afford any advantage to reduce the order of scaling.
TheO(N2) curve, clearly shown in Fig. 4, mainly roots in
that the gradients are evaluated in an atom-pairwise way. To
calculate the energy gradients with respect to a certain
nucleus position, contributions from all other atoms must be
considered, since the long-range Coulomb interaction cannot
be ignored for any atom pair. ThisO(N2) scaling, however,
is not the main problem for the molecules presented here.
For example, in the worst case, the HIV protease hexamer
molecule with 9378 atoms, the CPU time to calculate all the
gradients is about three times as the CPU time for one itera-
tion in the SCF solution phase energy calculation. As we
mentioned, typically it needs 20–90 iterations to get con-
verged SCF results and for each SCF calculation only one
gradient calculation is performed. Thus the CPU time for
gradient calculations is still not a major part of the total CPU
time. Although we did not clearly observe the effect of

TABLE IV. The molecules chosen for calculations in Fig. 3 and Fig. 4 and
the memory needed for one density matrix in originalMOPAC and the divide-
and-conquer implementation withRh57.0 Å. The unit is million bytes
~Mbyte!. The structures are from various schemes and indicated in the foot-
notes.

Molecule
Number
of Atoms

Memory needed

MOPAC Divide-and-
Conquer

4 C–G pairs A–DNAa 256 2.24 0.62
RP71955b 280 2.13 0.61
8 C–G pairs A–DNAa 508 8.91 1.36
Crambinc 642 10.54 1.66
BPTId 892 20.33 2.34
Crambin dimerc 1284 42.16 3.40
HIV proteasee 1563 58.91 3.76
lysozymef 1960 98.55 5.72
P21g 2662 181.04 7.79
HIV protease dimere 3126 235.59 8.25
Superoxide dismutasej 4380 488.63 12.93
Alcohol dehydrogenasei 5639 783.38 16.86
HIV protease 4-mere 6252 942.31 15.42
Restriction endonuclease bamhik 7115 1315.44 22.67
Acetylcholinesteraseh 8408 1807.02 26.78
HIV protease 6-mere 9378 2120.14 24.57

aSYBYL minimization.
bNMR ~Ref. 37!.
cCrystal ~Ref. 38!, then SYBYL minimization.
dCrystal ~Ref. 39!, then MM simulation~Ref. 40!.
eCrystal ~Ref. 41!, then MM simulation~Ref. 42!.
fCrystal ~Ref. 43!, then AMBER minimization.
gCrystal ~Ref. 44!, then AMBER minimization.
hCrystal ~Ref. 45!, then AMBER minimization.
iCrystal ~Ref. 46!, then AMBER minimization.
jCrystal ~Ref. 47!, then AMBER minimization.
kCrystal ~Ref. 48!, then AMBER minimization.

FIG. 3. The CPU time needed for one iteration in energy calculations for
molecules listed in Table IV in-gas phase~unfilled! and solution phase
~filled!.

FIG. 4. The CPU time needed for the gradient calculations for molecules
listed in Table IV in gas phase~unfilled! and solution phase~filled!.
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O(N2) scaling from the Coulomb interaction in the energy
calculations, we expect it will appear for larger molecules
and fast multipole methods will be needed to overcome this
problem.16,38,39

Third, we have extended the capability of semiempirical
quantum mechanical methods to treat molecules of over
9000 atoms on a typical workstation. Many properties, such
as the Mulliken charges, the molecular dipole moments, the
solvation energy and the electrostatic potential surface, can
be calculated. However, for large molecules, large amount of
CPU time is needed to perform a full geometry optimization,
which is necessary in some types of problems; for example,
a molecule with 3000 atoms will need more than ten days to
finish a full geometry optimization if assuming that the num-
bers of SCF calculations needed is about 320. The solution to
this problem will be either using more sophisticate algo-
rithms in the optimization process or that the geometry opti-
mization process must be broken into local geometry optimi-
zation processes, i.e., only optimizing a small region while
keeping the rest part frozen.

In addition, as proposed by Yang and Lee,20 the density
matrix version of the divide-and-conquer method can be ap-
plied to density-functional and Hartree–Fock calculations.
We realize that the current computer power is still difficult to
handle large molecules at high levelab initio calculations,
however, the linear scaling of quantum calculations at this
level will eventually become necessary.

In conclusion, we demonstrated theO(N3) of the diago-
nalization process has been circumvented by incorporating
the divide-and-conquer method with semiempirical approxi-
mation. The nearlyO(N) scaling makes semiempirical meth-
ods applicable to large molecules such as proteins and en-
zymes. With this method, quantum calculations of many
interesting macromolecules can be performed and a better
understanding of those systems at the electronic level will be
realized.
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