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Linear-scaling semiempirical quantum calculations for macromolecules

Tai-Sung Lee, Darrin M. York, and Weitao Yang
Department of Chemistry, Duke University, Durham, North Carolina 27708

(Received 9 April 1996; accepted 6 May 1996

A linear-scaling method to carry out semiempirical quantum mechanical calculations for large
systems has been developed based on the density matrix version of the divide-and-conquer
approach. The method has been tested and demonstrated to be accurate and efficient. With this
implementation, semiempirical quantum mechanical calculations are made possible for large
molecules over 9000 atoms on a typical workstation. For biological macromolecules, solvent effects
are included with a dielectric continuum model. 96 American Institute of Physics.
[S0021-960606)01231-1

INTRODUCTION tion of the matrix elements and the long-range Coulomb
interaction*?~1® It is hopeful that work along this line will
A guantum mechanical description of the electronicsoon make first-principle calculations of the matrix elements
structure is important for many aspects of molecular modelefficient enough that the linear-scaling quantum mechanical
ing, including bond formation and cleavage in chemical re-algorithms can be effective.
actions, polarization, and chemical bonding of metal ions. In The situation in semiempirical quantum mechanical
these cases, it is difficult, if not impossible, to use the conmethods is quite differertt:*® The Hamiltonian matrix is
ventional molecular mechanical force fields. Quantum calcueonstructed very efficiently from semiempirical approxima-
lations are, however, expensive. The numerical effort of contions and hence the computational effort is in practice limited
ventional electronic structure methods scalebl®er higher, by the cubic-scaling diagonalization processes. This is just
where N is the number of electrons. This cubic or higher what the linear-scaling algorithms are designed to overcome.
order scaling is the ultimate bottleneck for the applications ofStewart has proposed a local molecular orbital method for
quantum calculations to large molecules. Currently, onlysemiempirical calculation. Yang and Le& extended the
molecules with few hundred atoms can be treateghifinitio  divide-and-conquer approatto accommodate density ma-
calculations-? while conventional semiempirical methods trix description so that it can be applied to Hartree—Fock and
can handle about 1000 atoms with supercomptters. semiempirical methods. Thus applying semiempirical quan-
Much effort has been made in the development of lineatum calculations to large systems becomes possible with this
scaling quantum calculations, i.e., methods that require condensity-matrix version of the divide-and-conquer approach.
putational effort proportional to the size of the system. Yang  In this paper, we describe the implementation of the den-
first proposed the divide-and-conquer approach and demosity matrix divide-and-conquer approach into the semiempir-
strated that it is possible to attain a solution of linear scalingcal MOPAC program?-?* The method is demonstrated to be
by localizing the electronic degrees of freeddmGalli and  accurate and efficient. Semiempirical quantum mechanical
Parrinello suggested a linear scaling algorithm and applied tealculations are made possible for large molecules over 9000
tight-binding Hamiltonian$.Li, Nunes, and Vanderbilt intro-  atoms on a typical workstation. For description of biological
duced a variational method for obtaining the density matrixnacromolecules, solvent effects are included with a dielec-
with cutoff in real space and showed linear scaling in com-ric continuum model.
putational efforf. Mauri, Galli, and Caf and Ordejn
et al.® used unconstrained minimization methods combined
with a local orbital formulation and were able to achieveTHEORY
linear scaling. Stechel, Williams, and Feibelman also pro-
posed a block diagonalization process in subsplce.  We briefly summarize the density-matrix divide-and-
Goedecker and Colombo developed another linear scalingonquer approach belof®. The one-electron density matrix
algorithm to replace the diagonalization process in the tightean be used as the basic variable in various quantum me-
binding calculationd! These linear-scaling methods elimi- chanical calculations. Its matrix elements are given by
nate the cubic-scaling step associated with the determination
of _the occupied electronlc_elg_enstates in the quantum calcu- pij :2 NCimCim (1)
lations. Nonetheless, application of these methods to macro- m

molecule systems has not yet been demonstrated adlihe wheren, . is the occupation number of thath molecular

initio level. The main reason, in the case of linear combina .., and{C,} are the expansion coefficients of the mo-

itlon ticl)lf f\r:orrg)lcttc;rtr)}ltali, |svth';a1tﬂt1he rr;]aztrlﬁ elementrsvatlugtlsnﬁcular orbital over atomic basis functiod<;,,} are deter-
S S € botlleneck, eve ouy as a computationay,;,q 4 by the algebraic eigenvalue equation

scaling of only formallyO(N?). Recent efforts have been
directed to develop linear-scaling algorithms for the evalua- HC,,=SC€en, 2
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whereH is the molecular one-electron Hamiltonian matg,
is the overlap matrix, and, is the eigenvalue corresponding E=3> pij(H™+F)), (10)
to the eigenvecto€,,. !

In the density matrix formalism of the divide-and- whereH®"®is the one-electron core Hamiltonian matrix and
conquer approach, the density matrix is divided into subF is the Fock matrix. It can be easily expressed in the divide-
system contributions by the use of the symmetric weightnd-conquer approach
matricesP“

E=32 2 pfj(H{™Fy)). (1D
pij=2> Pipii=2 pf, () “
“ “ The energy gradient expressions for the divide-and-
conquer approach have been derived and shown to be
> Pi=1, Vi,j=1---M, (4)  accuraté®?®In theMoPAC package, the energy gradients are
“ calculated with the frozen density approximatfdiwith this

wherea is index of subsystems arM is the size of the basis @pproximation, the divide-and-conquer energy gradient with
sets. Currently, the Mulliken-type weight matrix is ué¢d ~ respect to thexth nucleus positiorR,, is expressed by

Pﬁzl |f |E(X and JECY VRLXE:%Z E pICJfVRa(HICJOI'e_'_F”) (12)
=1/2 if iea and ¢ a, (5) a ij
=0 if i¢a and j¢a The gradients can be calculated by analytical metflods

Because of the local nature of the density matrix in reaC’ Py the finite difference methdd. Except that the total

space, the density matrix projected into each subsystem cAIgNSity matrix is approximated by the divide-and-conquer

be approximated by solving the expansion coefficients |O_approach, other procedures to calculate gradients are the
cally; namely same as inMOPAC. The BFGS optimization procedure is

used in the original MOPAC package for geometry
o ot o~ optimization?® This procedure requires constructing the Hes-
pii:PiJ% NmCimCim 6) sian matrix which has ar©(N?) scaling requirement of
memory usage; it cannot be used for large molecules. In-
whereng, andCf, are the occupation number and the eigen-stead, we chose the commonly used conjugate gradient
vector of themth molecular orbital in theath subsystem, method for geometry optimizatidi.
respectively. The local eigenvectors for théh subsystem For solution phase calculations, the COSMO model was
are determined by the subsystem eigenvalue equation  ysed?>3°-*3This model treats the solvent as a conductorlike
HeCo = SPCe e @ dielectric continuum. The s_olute charge (_jistribution is repre-
m m=m? sented by a set of atomic charges, dipole moments, and
whereH* is the molecular one-electron Hamiltonian matrix, quadrupole moments, that induces a reaction field charge
S“is the overlap matrix, anfe®} are the eigenvalues for the density on the solvent accessible surface of the solute. The
ath subsystem. solvation energy can be written as the reaction energy be-
The occupation numbeng, is approximated by the tween those charges
Fermi function f 5(u— efy), with f B(>_<)=[1+exp(_—3x)]*l, E.,—q'BO+"Aq, (13
whereg is the inverse temperaturg,is the chemical poten-
tial, u is chosen so that normalization of the density is main-where{Q;} are the atomic multipoles of solute afq;} are

tained the induced charges on the solvent accessible surface. The
atomic multipoles of thexth atom of solute moleculeQ!,,

sz E pESH (8) can be expressed in terms of the density matriand the

« o core chargeQ®""®, which is the sum of the nuclear charge

and the core electron charge, by the following:

pi=PiZ MiCHCIH=2P{2 To(u—eqCinCin, (O QSS=QmrepSS, 14

. QSM= _ ,SM (15)
where N is the total number of electrons and the factor 2 @ Pa s

accounts for the spin degrees of freedom. The foregoing de-
scription of the density-matrix divide-and-conquer approach
applies to general electronic structure calculations. The corwherep>S andpSM, andpMN are the matrix elements corre-
struction of density matrix from fragment contributions in sponding to the&s—S orbital pair, theS—P,, orbital pair, and

the manner of Eqg3)—(5) based on the Mulliken population the Py,—P\ orbital pair of theath atom, respectively. For
analysis has also been employed by Walker and Mé&%ey, hydrogen atom, onlySSis neededA andB are the matrices

QYN=—pMN " (MN=X,Y,2), (16)

a

and Massa, Huang and Karfe. of interaction between those chargesR|fis the position of
In semiempirical calculations, the electronic energy isthe ath atom and-; andr; are the position of the chargg
expressed by andqg;, then the matrix elements can be written as

J. Chem. Phys., Vol. 105, No. 7, 15 August 1996



2746 Lee, York, and Yang: Calculations for macromolecules

Ai=Iri—ri| % A;=3.85]Y2 (17) the buffer region size needed for a given accuracy is inde-
[ LR RN I i ' .
pendent of the size of the whole molectf? Hence, one can
B 1 f _ chooseN, to become roughly a constant; for example, each
i (a,MN) or MN=SS . . . . .
ITigl subsystem consists of a single amino acid and its buffer re-

gion includes all nearby atoms within a 6.0 A cutt®,=6.0

. 2
L To  3(idkTa A). Thus overall linear scaling can be reached with roughly

Mol [rial® IFial® fixed-size buffer region for each subsystem.
for MN=KK,K=(X,Y,Z) While the divide-and-conquer method overcomes the
O(N®) scaling problem in the diagonalization process, the
6(ria)k(riak Ta O(N?) or higher order scaling of the computer memory
- Irial® needs to be addressed. Since most of matrix elements in

guantum calculations are negligibly small for large mol-
for MN=KK',K,K"=(X,Y,Z),K#K' ecules, sparse matrix storage methods can be employed. For
(ri)kda density matrix, be_cause of its Io_cality iq real space, we can
= |r—|3 for MN=SKK=(X,Y,2), (18 truncate the matrix elements using a distance critefiyn,
ta Only the matrix elements corresponding to atom pairs with
whereS; is the surface area associated to the chaggén  interatomic distance less thd®y, are evaluated and stored.
unit of e.s.u), ri,=r,—R,, (r;,)k is the K-direction com-  This cutoff makes the memory storage of the density matrix
ponent ofr;,, andd, andT, are parameters of th&h atom.  proportional to the size of the molecules and also signifi-
Normally,{q;} are obtained by minimizing Eq13) and  cantly reduces the CPU time used for matrix element evalu-
than scaled appropriately to finite dielecttfdn mopPAc, the  ation. The one-electron core Hamiltonian and Fock matrices
minimization process is done through inversion of ghena-  are treated similarly.
trix. This method is fast for small systems because only one In the original MOPAC program, the two-electron inte-
matrix inversion operation is needed for the whole SCF prograls are calculated once and stored. While this is faster, the
cedure. However, it cannot be applied to large systems benemory needed for the two-electron integrals is roughly
cause of th@(N®) computational effort for matrix inversion 400N bytes where N is the total number of heavy atoms. It
and theO(N?) requirement of the computer memory to store becomes impossible to store these integrals when the mol-
AorA™l ecule is very large. Therefore, in our implementation they are
In our implementation, a preconditioned conjugate gra-calculated on the fly when needed. No significant slowdown
dient method was used to minimiEg,, in Eq. (13) to obtain ~ was observed by doing this.
the charge se{tqj}.33 This method needs iterative operations To further save memory, the eigenvectors obtained in
in the conjugate gradient minimization and leads to an addisolving local diagonalization problem are not entirely stored.
tional iterative procedure within a single SCF cycle. It re-Instead, based on the step-function-like character of Fermi
quires only moderate overhead relative to gas phase calcul&inction, only those eigenvectors affecting the determination
tions for large molecules because it does not need the CPUbf the chemical potential are stored. For other eigenvectors,

intensive matrix inversion procedure. the contributions to the density matrix are calculated before
The COSMO gradient term is given by they are discarded.
All results were performed on an IBM RS/6000 work-
Vg Eso=—q"(Vg B)Q+3q"(Vg A)g. (19 P

station with a 67 MHz POWER2 CPU, 256 MB memory,

Because only the Coulomb type interactions are involvedand 512 MB swapping disk space. The PM3 Hamiltonian
the gradients of matriced and B with respect to theath ~ was used for all calculatior’$:*® All the divide-and-conquer
nucleus positiorR, can be easily calculated. calculations have the same parameter sefirg, the same
KEYWORD) asmoPAcC default values. The program has the
ability to divide any molecule into roughly equal size sub-
systems. However, currently a subsystem is defined as one

In the divide-and-conquer approach, each subsystem @mino acid residue for protein molecules, and one nucleotide
described by a set of local basis functions, instead of thénit for DNA molecules.
entire set of atomic orbitals. The accuracy of the description
is enhanced by the use of basis functions of neighborinRESULTS
atoms. These neighboring atoms are called the buffer atom
We here select buffer atoms by a distance criteriRyt, If an
atom is within a distanc®,, of a subsystem, this atom will We chose a small protein, RP71955, which consists of
be included as a buffer atom for that subsystem. The diaga280 atoms, to test the accuracy of our implementation. The
nalization for a subsystem is performed with atomic basisstructure of this molecule is an NMR structure proposed by
functions on the subsystem atoms and buffer atoms, and tHerechetet al®’
computational effort scales & whereN,, is the number of Gradients can be calculated analytically or by the finite
basis functions in thexth subsystem and its buffer region. difference method in semiempirical calculations. Because the
Previous studies using density functional theory have showformulas to calculate matrix elements are much simpler than

IMPLEMENTATION

s
Accuracy
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TABLE I. The rms values of differences in Cartesian gradients by differentdensity-functional divide-and-conquer studf@$® For the
methods in gas phase and solution phasenbers in parenthesesalcula- ¢\ yoff distance in density and Hamiltonian matrices, a value
tions for the RP 71955 molecule. “MOPAC” means originabprac calcu- A . h d CPU
lation, “DC” means the divide-and-conquer calculation, “A” is analytic Qf 7.0 i 1S approp_rlgte to save the memo_ry usage an
gradient calculation, and “F” is the finite difference method. All entries are time without sacrificing accuracy. Henég, is set to be 6.0

in unit of kcal/mol/A. A andR,, to be 7.0 A, for subsequent calculations.

The inverse temperatur8 used in Eq.(9) has been

MOPACA MOPACF  DBcA PSP tested with the values of 20, 40, 100, and 1000 EVThe
MOPAC,A 0 2.9E-2 8.97-2 9.4€-2 maximum difference between values of SCF heat of forma-
0 (2.8E€-2)  (45E-2) (5.2E-2) tion is less than 0.02 kcal/mol. Subsequently, we chose
MOPAC.F ((?) éfg:; (i:gg:g) $=39.3 eV'%, which corresponds to 298 K.
DC,A 0 2.8E-2
) (2.8%E-2)
DC,F 0 Geometry optimization

0
© We tested the geometry optimization in solution for the

RP71955 moleculéwith which the originalMoPAC program

failed to finish the optimization processThe optimization
those to calculate derivatives of matrix elements, the finitgprocess stops when the following criterion is met: The maxi-
difference method is faster than the analytical method. Tablenum Cartesian gradient is less than 1.0 kcal/mol/A. This is
| shows the root-mean-squafens) values of Cartesian gra- comparable to the default value set in tiePAc package,
dient calculations by different methods for the RP71955which is 1.0 kcal/mol/A for the rms value of gradients.
molecule. The finite difference method gives very close re-  Figure 1 shows the decreasing of the maximum Carte-
sults compared to the analytic method, thus we chose thsian gradient, the rms value of the Cartesian gradients, and
finite difference method to calculate gradients, as is used ithe SCF heat of formation versus the number of iterations in
MOPAC packagé’! the geometry optimization. That the total enerdyeat of

Table 1l shows the accuracy for different matrix cutoff formation decreases exponentially with the number of itera-

distance,R;,, and different buffer sizeR,. We define an tion shows the conjugate gradient method performs well in
accuracy criterion as>10"2 kcal/mol per atom in energy searching the energy minimum. At the final iteration, which
calculations and 0.1 kcal/mol/Angstrom in gradient calcula-s at the 144th geometry optimization iteration and the 324th
tions. We found buffer size should be no less than 6.0 A t6SCF calculation, the maximum gradient and the rms value of
meet this accuracy criterion. This agrees with previoushe gradients are 0.87 and 0.19 kcal/mol/A, respectively.

TABLE II. The self-consistent calculation results of divide-and-conquer method for the RP71955 molecule in gas phase and solutiponpbexsein
parenthes@sE(dc) is the heat of formation of divide-and-conquer calculatiBfmopag, the heat of formation of the originalopAc calculation, has value
of —743.136 04 kcal/mol for gas phase an@72.662 54 kcal/mol for solution phad¥.is the total number of atom&(dc) andG(mopag are the Cartesian
gradients from finite difference in the divide-and-conquer calculation and the origawalc calculation, respectivelyR;, is the distance used to cutoff the
matrices andR,, is the distance used to define the buffer atoms. All energies in kcal/mol, gradients are in kcal/molFs ame in A.

(E(do)-E(mopagd)/N Rr
R 6.0 7.0 8.0 9.0 10.0
4.0 7.3E-03 —1.7%E-01 —3.87E-01 —7.4F-01 —8.18-01
(2.24E-02) (—2.7CE-01) (—7.67E-01) (—1.51E+00) (—1.8%+00)
5.0 1.3€-02 —2.1E-02 —4.28E-02 —4.67E-02 —8.76E-02
(1.6E-02) (1.54-02) (1.2E-02) (—1.2F-01) (—4.0IE-0)
6.0 42F-03 3.2E-03 3.1E-03 3.1E-03 3.0E-03
(5.41E-03) (4.4TE-03) (4.4E-03) (4.4E-03) (4.4CE-03)
7.0 2.0E-03 7.6E-04 6.3E-04 6.2F-04 6.2E-04
(2.14-03) (9.44E-04) (8.2CE-04) (8.07E-04) (8.06E-04)
8.0 1.7€-03 5.0E-04 3.56-04 3.3E-04 3.3E-04
(1.86E-03) (6.1F-04) (4.7TE-04) (4.61E-04) (4.60E-04)
rmsG(dc)-G(mopag)
4.0 8.8E-01 2.1£+00 2.1E+00 2.1E+00 2.1E+00
(8.7%E-01) (7.0E-01) (7.3%E-01) (7.6%E-01) (8.05-01)
5.0 2.3£-01 2.4E-01 2.06-01 3.0£-01 3.0E-01
(2.1E-01) (1.44E-01) (1.44-01) (1.4%-01) (1.8CE-01)
6.0 8.9E-02 9.0E-02 9.0€-02 9.0€-02 9.0€-02
(4.1E-02) (4.25E-02) (4.1FE-02) (4.12E-02) (4.15E-02)
7.0 1.7€-02 1.3E-02 1.2E-02 1.2E-02 1.2E-02
(1.67E-02) (2.0%-02) (1.68E-02) (1.67E-02) (1.67E-02)
8.0 1.3€-02 6.9F-03 6.7E-03 6.7E-03 6.7£-03
(1.6E-02) (2.0E-02) (1.65E-02) (1.6E-02) (1.6E-02)
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FIG. 2. The CPU time comparison between the divide-and-conquer imple-
- 0 mentation and the originalorac in gas phasésolid diamond, the original
E 35 MOPAC in solution phase(unfilled diamond, the divide-and-conquer gas
& phase calculatiogsolid squarg and the divide-and-conquer solution phase
30 calculation(unfilled squarg
<
3
E 25
3 20 perimental data, while the dihedral angles have a somewhat
§ larger deviation. The rms positional deviation is 0.35 A, in-
,g 15 dicating only a small deviation from the NMR structure.
& 10
]
5 CPU time and memory usage
0 First, the scaling behavior of CPU times for both the
0 30 60 % 120 150 original MOPAC and our implementation were compared by
Number of Iterations testing a series of alanine polypeptides which were con-

_ o structed by SYBYL in linear alpha helix form and have size
FIG. 1. The change of SCF energyeat of formationand gradients inthe ot 13 410ms to 403 atoms. Figure 2 shows the average CPU
geometry optimization process. The upper is SCF energy in kcal/mol while’, . ) . ) .
the lower is the maximum Cartesian gradiésolid line) and the rms gra-  tIme used_ in a 20-iteration energy CalCUlat'_on tes_t in both gas
dient (dash ling in kcal/mol/A. and solution phase calculations. The cubic scaling behavior
of original MOPAC method is clearly shown. It also demon-

) o strates the limitation of the maximum size treatable in
The total CPU time for the whole optimization is 118 251.64,,5ac on a typical workstation. In this test, the divide-and-

s which is about 33 h. The average number of iterations use(.januer method is faster than originabPAc when the size
to get.a converged result in each SCF calcglauon is 6.8. Thgt molecule is greater than 263 atoms in gas phase calcula-
optimized geometry has been taken as the input geometry f¢foy and when the size of molecule is greater than 123 atoms
original MOPAC to calculate the gradients and gives values ofi, solution phase calculation. For space-packed 3-D mol-
0.74 and 0.20 for the maximum gradient and the rms Ofkcyjes; we find it is already faster when calculating RP71955
gradients, respectively; those values already meet the defayl{oecyle of 280 atom; the average CPU time for one itera-
geometry optimization criterion in th@oPAC package. This g in a SCF calculation is 39.93 s using the originaPAC
confirms that the divide-and-conquer energy minimum isynq js 29.72 s using the divide-and-conquer method in gas
also a converged minimum in the originabPAC program.  phase calculations. In solution phase calculations, the values
In Table 11, the geometry obtained is compared with thepacome 296.89 s for originalopAc and 44.74 s for the
input geometry which is an experimental NMR minimized yjyige-and-conquer method. The main reason for this signifi-
average structure. The rms values show the bond lengths apd ¢ speed-up in solution calculations is that GE%) ma-
bond angles from our calculation are very close t0 the ey inversion process is replaced by a faster conjugate gra-
dient method®®
TABLE III. The rms values of the differences of geometry parameters ob-  S€veral molecules with size of 256 at(_)ms to 9378 ‘?‘toms
tained from the divide-and-conquer calculation and origimagac calcula-  (Table 1V) were chosen to test the CPU time needed in the
tion for the RP71955 protein molecule. divide-and-conquer method. For each molecule, one iteration
of energy calculation was performed, followed by the gradi-

rms value . . .
vau ent calculation. Figure 3 shows the CPU time used for the
Bond length(A) 0.026 energy calculations for those molecules in gas phase and
EB)F’h”ddar;g'e(d&%ree . li-gg solution phase; Fig. 4 is the CPU time for the gradient cal-
Inedral ang egre . . . . . .
rms positional deviatiorA) 0.35 culat!ons. A nearly linear-scaling behavior in the energy cal-
rms positional deviation without H atontd) 0.32 culations is demonstrated. The HIV protease tetramer and

hexamer molecules need significantly smaller CPU time than

J. Chem. Phys., Vol. 105, No. 7, 15 August 1996
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TABLE IV. The molecules chosen for calculations in Fig. 3 and Fig. 4 and

the memory needed for one density matrix in origimabac and the divide- 16000 :
and-conquer implementation witR,=7.0 A. The unit is million bytes 14000 +
(Mbyte). The structures are from various schemes and indicated in the foot- 12000 - b4
notes. E
% 10000 + s
Memory needed ‘g 8000 L .
Number  mopac  Divide-and- ; 6000 + s °
Molecule of Atoms Conquer 8 4000 .
4 C-G pairs A-DNA 256 2.24 0.62 2000 + o
RP71958 280 2.13 0.61 0 Lomase® , , . l
8 C—G pairs A—-DNA 508 8.91 1.36 " ‘ ' ' ' ’
Crambirf 642 10.54 1.66 0 2000 4000 6000 8000 10000
BPTI¢ 892 20.33 2.34 Number of Atoms
Crambin dimet 1284 42.16 3.40
HIV proteasé 1563 58.91 3.76 FIG. 4. The CPU time needed for the gradient calculations for molecules
lysozymé 1960 98.55 5.72 listed in Table 1V in gas phasg@infilled) and solution phaséilled).
p2¥ 2662 181.04 7.79
HIV protease dimér_ 3126 235.59 8.25
Superoxide dismutase 4380 488.63 12.93 To compare the memory usage in our implementation
Alcohol dehydrogenase 5639 783.38 16.86 with original MOPAC, we calculated memory usage of the
HIV protease 4-mér 6252 94231 1542 density matrix(The one-electron core Hamiltonian matrix
Restriction endonuclease bathhi 7115 1315.44 22.67 d th K ix h h . he d .
Acetylcholinestera§e 8408 1807.02 26.78 an the Fock matrix ?.VG t.e same size as the density ma-
HIV protease 6-mér 9378 2120.14 24.57 trix.) The results are listed in Table IV. The total memory

needed in the divide-and-conquer implementation is roughly

“SYBYL minimizafion. eight times the size of the density matrix, whilePAc needs

°NMR (Ref. 37.

‘Crystal (Ref. 38, then SYBYL minimization. more than twenty times.

dCrystal (Ref. 39, then MM simulation(Ref. 40.

Crystal (Ref. 41, then MM simulation(Ref. 42. DISCUSSIONS AND CONCLUSIONS

fCrystal (Ref. 43, then AMBER minimization.

iCrystal (Ref. 44, then AMBER minimization. We would like to address several points associated with
igrystt""l' ((se]f- 25*::8” :&"BBEEE m,'”_'m,'zatt_'on- the linear-scaling curve obtained in one-iteration energy cal-
,-ngtzl(R:f: 4%’ thzg AMBER m:z:m:izt:gﬂ culations. First, the total CPU time needed to get a con-
kCrystal (Ref. 48, then AMBER minimization. verged SCF energy may not necessarily@g\), because

the number of iterations to get converged results for large

molecules may vary. We currently use a simple mixing
other molecules with similar size because they are relativelgcheme to ensure and speed up the convergence, and find
less space packed, which means that less atoms are includémit the numbers of iterations needed to get converged ener-
as buffer atoms and the CPU time is reduced as a resulgies for different molecules are almost unpredictable. For
However, in solution phase calculations, these two moleculesolecules we tested, they fell into a range of 20 to 90, and
have more solvent accessible surface area and need maxee independent to the size of molecules. Thus a detailed
CPU time. The gradient calculations give &{N?) curve,  study of convergence is needed.
which we will discuss in the next section. Second, because there is no diagonalization process in
the gradient calculations, the divide-and-conquer method
cannot afford any advantage to reduce the order of scaling.
The O(N?) curve, clearly shown in Fig. 4, mainly roots in

5000 T v e h . ) e
4500 at the gradients are evaluated in an atom-pairwise way. To
4000 + calculate the energy gradients with respect to a certain
g 3500 - * R nucleus position, contributions from all other atoms must be
2 3000 + . considered, since the long-range Coulomb interaction cannot
E 2500 -+ ¢ . o be ignored for any atom pair. Th@(N?) scaling, however,
£ 2000 + . o is not the main problem for the molecules presented here.
g 1500 + N o For example, in the worst case, the HIV protease hexamer
1000 34 molecule with 9378 atoms, the CPU time to calculate all the
00+ s gradients is about three times as the CPU time for one itera-
Uad " ‘ ‘ ‘ ‘ tion in the SCF solution phase energy calculation. As we
0 2000 4000 6000 8000 10000

mentioned, typically it needs 20-90 iterations to get con-
Number of Atoms verged SCF results and for each SCF calculation only one
FIG. 3. The CPU time needed for one iteration in energy calculations forgrad!ent CaICUIaJFlon I.s pgrformed. Thus the CPU time for
molecules listed in Table IV in-gas phagenfilled) and solution phase 9radient calculations is still not a major part of the total CPU
(filled). time. Although we did not clearly observe the effect of
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